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Abstract 
An "exac t "  expression for the  funct ional  derivative o f  the  distr ibution func t ion  o f  a 
A-nucleon pair in nuclear mat ter  is derived. An approximate  expression is also derived 
by  means  o f  the  Kirkwood superposi t ion approximat ion.  The  latter expression is sub- 
sequent ly  used to obta in  the  Euler equat ion  for the  correlation func t ion  f ( r lA)  o f  a A- 
nucleon pair in nuclear mat ter .  

1. Introduction 
J. C. Lee & A. Broyles (1966) have developed a variational method for 

the ground state of a many-particle spinless Bose system, using a Bijl (1940)- 
Dingle (1949) wave function 

• =exp[~ ~ u(ri])] 
i<] 

They gave first an exact expression for the functional derivative of the 
pair-distribution function p(2) This functional derivative is given in terms of 
p(2) and also in terms of p(3) and p ( 4 )  By using subsequently the super- 
position approximation they obtained an approximate expression for the 
radial distribution function g and also an Euler-Lagrange equation for this 
function. The Euler equation is similar to a result derived by Hiroike (1962), 
who, however, considered an arbitrary variation of gg instead of g~. 

Becker (1969) and Pokrant & Stevens (1973) have adopted, more recently, 
the technique of Lee & Broyles in their treatment of the electron gas. 
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In the present paper a variational approach for a system, consisting of 
many identical particles, to which an "impurity" has been added will be 
developed. A typical example of such a system is the infinitely and uniformly 
extended nuclear matter (A -~ 0% ~2 ~ 0% in such a way that A/Q = p = con- 
stant), to which a A-particle has been attached. In the present treatment 
this system of "(infinite) hypernuclear matter" will be considered, although 
the formalism may be applied equally well to other impure similar systems. 
The problem of impure nuclear matter has also been studied (Grypeos, 1971; 
1974) by using the "closed form" approximate expression (Westhaus, 1966) 
for the A-nucleon pair distribution function P(N~" In the recent development 
of this study, Edelen's (1969) formalism, which involves "nonlocal" Euler- 
Lag, range operators, was found appropriate to be used. In the present approach 
no approximate expression for p(~) is initially employed. 

In the following section the energy functional, which is derived if a Jastrow 
(1955) type many-body wave function is used for the "impure system" 
(hypernuclear matter), will be considered, and "exact" expressions for the 
functional derivative of the distribution function of a A-nucleon pair: p(~A ) 
and related functions will be obtained. In the last section approximate ex- 
pressions for these functions will be given, and the corresponding Euler- 
Lagrange equation for the A-nucleon correlation function f(rlA) will be 
derived. 

2. The Energy Functional and the Exact Expression for the Functional 
Derivative of p~ ) 

The following trial many-body wave function will be used, for the total 
system (hypernuclear matter): 

A 

~a  +A = ~A i_~l.= f(riA ) (2.1) 

where ~a  is the exact ground-state wave function of the "pure system" (nuclear 
matter) and ]'(rim) is the Jastrow correlation function between the ith nucleon 
of nuclear matter and the impurity particle (A particle). 

The Hamiltonian operator of hypernuclear matter is 

/tA +A = HA + HA (2.2) 

where HA and/-ira are the Hamiltonian operators of nuclear matter and of 
the A particle, respectively. 

Use of (2.1) and (2.2) leads to an expression for the binding (or separation) 
energy BA of the A particle upon which either a cluster expansion may be 
immediately performed (Downs and Grypeos, 1966) or integration by parts 
may be applied in such a way that BA is written in the form (for spin and 
i spin independent central potentials, which are assumed) (Westhaus 1966; 
Westhaus and Clark 1966; Clark and Mueller 1969) 
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where WNA is the "effective potential" 

h2[vf(rlA) 12 h2 {v2f(rlA) 
WNA(r,A) = ~ [ ~  4MA f ( r , A ~  + 

(2) 
and PNA is the A-nucleon pair distribution function, defined by 

p(2)frl, A f [tI,A +Al2dr2 . . .  drA 
NAY rA) f ["Ira +Al2drl "" "drA "drA 
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-~TZ)-J J + V~a(r,a) 
(2.4) 

(2.5) 

Since the nudear system is assumed to be expanded isotropically, the 
number of nucleons being increased proportionately to the volume, 
p(2) (rl, rA) is a function only of the distance between nucleon 1 and the 

" e ( 2 )  ( 2 )  A partlcl . PNA = PNA (rlA). 
Formula (2.3) is suitable in deriving Westhaus' approximate expression in 

closed form for BA and will be also adopted in the present analysis. 
Application of the variational principle requires the calculation of the 

functional derivative of the pair distribution function p~A) (rl~jrA)..... At this 
point it is useful to define the/ th  NA distribution function pg)a(rl,.- ", r/-1, ra) 
as follows: 

A! fltI'A+al2dr] "" "drA 
P g )  (rt, r2, . .., r]-l ,  rA) - 

(14 - f + 1)! f I~A +A lZdrl " '" drAdrA 
(2.6) 

For]  = 2 we obtain the previously quoted expression for p(~) (rl, rA). It 
should be noted that in the various expressions of the distribution functions 
that we are using, the symbol for integration implies also summation over all 
spin and isospin coordinates. 

The distribution function p(NDA, is obviously different from the usual 
distribution function pq), which is defined as follows: 

A[ f [~A 12dr/+l "" "drA 
p(i)(rl "" "r/) = (.4 - ] ) !  f Iq~a ladrl " • drA (2.7) 

By considering expression (2.5) we may easily calculate the first variation 
of 8p(~ ) in the usual way. We find 

(2) _ [ 6f(rlA) .(2) (rlA. t + f 8f(r2A)p(3) :r 8PNA(rlA)=2[~VNA,/ J ~  NA1. 1, r2, rA) dr2 

~ P ~  ~E1A~ f 6f(rlA) p(2) (rlA) drldrA 1 
J f(rlA-------~ NA J 

(2.8) 
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In order to obtain the expression for the functional derivative 
[Sp(~A) (r)]/Sf(raA), we must write 8p~)A (r) as follows: 

The result is 

f (  (2) 8PN;X(r)] 8f(rlA) drlA  p(L)(o = (2.9) 

6p(~)(r) _ 2 [p~A) (r lA)(~(r lA -- r)  + n ( 3 ) / "  + 
~f(rlA) f(rlA) VNA~.* rA, rlA + rA, rA) 

(2) (2) 
- apNA(rlA)PNA(r)] (2.10) 

We see that [Sp(~)(r)] [Sf(rlA) is expressed in terms of f ( r la )  and the 
distribution functions p(~) and p(~). If we compare the above result for the 
functional derivative ofp(~) with the corresponding result for the pair 
distribution function of the Bose system, we observe that in the present case 
the expression for the functional derivative is simpler. 

In the case of a system consisting of identical particles, it is customary to 
define the so-called g-distribution functions, which are closely related to 
the p: 

A! f [~A [2dr/+1 "" • drA = O-/P(J)(rt, "" • rj) 
gq)(rl, r2 . . . .  , r]) = #'(.4 - ])! f [~A ]2drl " '"  drA 

(2.11) 

In the case of the system, with the impurity, which we are discussing, we 
may define the following g2~ ) distribution functions: 

~2 "A! f I~A +al2dr/ " • ' drA 
g 0 / ) ( r l , . . . , r / - t , r A )  =p/_l(A - ] +  I)! f["IrA+A[2drm "" "drA "drA 

_ P0N ( rl . . . .  , rj-1, ra)  (2.12) 

The function g(~) is the radial distribution function gNA(rlA). We may 
further define the related GNa-distribution function as follows: 

gNA(rlA) = f 2(rlA)GNA(rlA) (2.13) 

The "exact" expressions for the functional derivatives ofgNA and G~:.x are 
easily obtained from the formula (2.10). We find 

8gNA(r)= 2 

5f(rlA) f(rlA) 
[gNa(rla)6(rlA + (3) -- r) og)vh(r + rA, rla + rA, rA) 

-- PgNA(rlA)gNA(r)] (2.14) 
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and 

~GNA(r) _ 2p [g(3)(r + rA, r l a  + rA, rA) 
6 f  (r tA) f2(r)f(rlA) 

- f2(rlA)GNA(rlA)f2(r)GNA(r)] (2.15) 

3. Approximate Expressions for the Functional Derivatives and the Euter 
Equation for the Correlation Function f i rm)  

It is advisable, for practical purposes, to obtain approximate expressions 
of  the functional derivatives of  the distribution functions gNA and GNA, 
which were derived in the previous section 

We shall use the Kirkwood superposition approximation, which is written 
in the present case as follows: 

g}~)(r 1, r2, rA) ~ g(A) (rl2)gNA(rlA)gNA(r2A) (3.1) 

where gA(r12) is given by (2.1 1) with]  = 2 and I~ A + Al2drA instead of I~ A 12 . 
We may therefore write 

~gNA(r) 2 

6f(r lA) f(r lA) 
{gNA(rlA)8 (rlA -- r) + pgNA(rlA)gNA(r ) [g(A) (IrXA-- r l) -- 1 ] } 

(3.2) 

and 

6GNA(r) 
- -  ~ 2pf(rlA)GNA(rlA)GNA(r) [f~vN (1 rlA-- r i)G(A)([ rlA - r l) - 1] 
~f(rlA) 

(3.3) 

The variational principle may now be applied to the energy functional. 
The variation will be performed by imposing also the integral constraints 

[f2(rla)GNA(rlA) -- 11 drlA = D1 = finite (3.4) P 

P f [f(rlA) -- 1 ] 2GIvA(rIA) d r Ia  = D2 = finite (3.5) 

The first has its origin to the denominator in the distribution function, 
while the second is a "healing condition." 

Owing to the above constraints, two Lagrange multipliers appear in the 
variational problem. The first Lagrange multiplier (Xl) is due to (3.4), while 
the second (X2) is due to the healing condition. 
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The Euler equation of the variational problem is 

h2 ( " d2f(rlA)+[ ~ GNA(rlA)+dGNA(rlA)]df(rlA)l 
2pNA G N A ( r l A ) ~  [rlA ~ J ~ J  

+ _ dGNA(rlA)+ + VNA(rlA)GNA(rlA) f(rtA) 
8MA /'la drlA ~ ] 

+ f d r { (  ~22~NA 4-MA!a2) [df(r)]2-Thzf(~[d2f(r)+2df(r)][dr ] 4 - ' M A ~ ' r ' [ ~  r dr ] +  VNA(r)f2(r)} 

--~f(rlA) + ~-1 GNA(rlA)f(rlA) + f ary tr) ~ 

{ ' GNA(F) } ~f(/'tA) +~k2 GNA(rlA)[f(rlA)- 1] + f dr[f(r)- 112½ = 0 (3.6) 

where the functional derivative ~GNA(f)/~)f(rlA) is given by (3.3). 
The study of the asymptotic behavior of this equation at large distances 

r ta  leads either to ~kl = 0 or to a condition similar to that which has been 
previously obtained [see formula (14) of Grypeos, 1974] but with GA(rI2) 
instead of Z(2°)(r12). 

The above equation is an integrodifferential equation for the unknown 
function f(rlA) and may be solved numerically. 
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